skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hardison, Sean"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Restoration is accelerating to reverse global declines of key habitats and recover lost ecosystem functions, particularly in coastal ecosystems. However, there is high uncertainty about the long-term capacity of restored ecosystems to provide habitat and increase biodiversity and the degree to which these ecosystem services are mediated by spatial and temporal environmental variability. We addressed these gaps by sampling fishes biannually for 5–7 years (2012–2018) at 16 sites inside and outside a rapidly expanding restored seagrass meadow in coastal Virginia (USA). Despite substantial among-year variation in abun-dance and species composition, seine catches in restored seagrass beds were consistently larger (6.4 times more fish, p<0.001) and more speciose (2.6 times greater species richness, p<0.001; 3.1 times greater Hill–Shannon diversity, p=0.03) than seine catches in adjacent unvegetated areas. Catches were particularly larger during summer than autumn(p<0.01). Structural equation modeling revealed that depth and water residence time interacted to control seagrass presence, leading to higher fish abundance and richness in shallow, well-flushed areas that supported seagrass. Together, our results indicate that seagrass restoration yields large and consistent benefits for many coastal fishes, but that restoration and its benefits are sensitive to the dynamic seascapes in which restoration is conducted. Consideration of how seascape-scale environmental variability affects the success of habitat restoration and subsequent ecosystem function will improve restoration outcomes and the provisioning of ecosystem services. 
    more » « less
  2. Abstract Blue crabs ( Callinectes sapidus ) are highly mobile, ecologically-important mesopredators that support multimillion-dollar fisheries along the western Atlantic Ocean. Understanding how blue crabs respond to coastal landscape change is integral to conservation and management, but such insights have been limited to a narrow range of habitats and spatial scales. We examined how local-scale to landscape-scale habitat characteristics and bathymetric features (channels and oceanic inlets) affect the relative abundance (catch per unit effort, CPUE) of adult blue crabs across a > 33 km 2 seagrass landscape in coastal Virginia, USA. We found that crab CPUE was 1.7 × higher in sparse (versus dense) seagrass, 2.4 × higher at sites farther from (versus nearer to) salt marshes, and unaffected by proximity to oyster reefs. The probability that a trapped crab was female was 5.1 × higher in sparse seagrass and 8 × higher near deep channels. The probability of a female crab being gravid was 2.8 × higher near seagrass meadow edges and 3.3 × higher near deep channels. Moreover, the likelihood of a gravid female having mature eggs was 16 × greater in sparse seagrass and 32 × greater near oceanic inlets. Overall, we discovered that adult blue crab CPUE is influenced by seagrass, salt marsh, and bathymetric features on scales from meters to kilometers, and that habitat associations depend on sex and reproductive stage. Hence, accelerating changes to coastal geomorphology and vegetation will likely alter the abundance and distribution of adult blue crabs, challenging marine spatial planning and ecosystem-based fisheries management. 
    more » « less